[Prepwork 3.3]
Q1. Which of the following are possible formulas for a function
y = f (x) such that f'(x) = 10x^9*e^x+x^10*e^x?
• A. x10ex+10
• B. 3+x10ex
• C. x10ex+1
• D. 9x9ex−1
• E. x10ex+10
• F. 10x10ex
• G. x10ex
A: ABG
Q2. Which (single) rule would one use to differentiate f (x) =x*e^x?
A: the Product rule
[HW 3.3]
Q1. Find the derivative of the function f (x), below. It may be to your advantage to simplify first.
f(x) = (x^5−x^(1/2))*9^x
A: f'(x) = (5x^4+x^5(ln 9)- (1/2)x^(-1/2)-x^(1/2)(ln 9)*9^x
Q2. Find the derivative of the function y, below. It may be to your advantage to simplify first.
y =(t +10)/2^t
A: dy/dt = (2^t - (t+10)(ln 2)(2^t))/2^(2t)
Q3. Find the derivative of the function f(z), below. It may be to your advantage to simplify first.
f(z) = (z^2+10) / z^(1/2)
A: f'(z) = (2z*z^(1/2) - (z^2+10)(1/2)z^(-1/2))/z
Q4. Find the derivative of the function w(x), below. It may be to your advantage to simplify first.
w(x) = 23e^x/3^x
A: w'(x) = 23e^x*3^(-x)*(1-ln 3)
Q5. Use the figure below to estimate the indicated derivatives, or state that they do not exist. If a derivative does not exist, enter dne in the answer blank. The graph of f (x) is black and has a sharp corner at x = 2. The graph of g(x) is blue.
Let h(x) = f(x) ·g(x). Find
A:
A. h'(1) = 1
B. h'(2) = dne
C. h'(3) = -1
Q6. Let h(x) = f (x) ·g(x), and k(x) = f (x)/g(x). Use the figures below to find the exact values of the indicated derivatives.
A:
A. h'(2) = -8/3
B. k'(−2) = 2
Q7. Let F(3) = 4,F'(3) = 5,H(3) = 4,H'(3) = 2.
A:
A. If G(z) = F(z) ·H(z), then G'(3) = 28
B. If G(w)=F(w)/H(w), then G'(3)= 3/4
'[Umich] COE Core > MATH 115 (Calc 1)' 카테고리의 다른 글
[Notes & HW Answers] 3.5 The Trigonometric Functions (0) | 2022.11.21 |
---|---|
[Notes & HW Answers] 3.4 The Chain Rule (0) | 2022.11.21 |
[Notes & HW Answers] 3.2 The Exponential Functions (0) | 2022.10.28 |
[Notes & HW Answers] 3.1 Powers and Polynomials (0) | 2022.10.28 |
[WeBWork] Prepwork & HW 2.1~2.6 & 3.10 Answers (0) | 2022.10.28 |
댓글