[Prepwork 6.2]
Q1. If πΉ(π₯) is an antiderivative of π(π₯), what is the most general antiderivative?
Q2. Using the properties of antiderivatives in theorem 6.1 to find
A: ∫^(π/3)_0 (2/cos^2π) ππ= 2tan(π/3) - 2tan(0)
[HW 6.2]
Q1. Find an antiderivative πΊ of π(π§)=1/π§^6
A: πΊ(π§)= (-1/5)z^(-5)+1
Q2. Find an antiderivative π of π(π )=3sin(3π ).
A: π(π )= -cos(3s)+3
Q3. Find an antiderivative πΉ(π₯) of π(π₯)=3π₯−(x)^(1/2).
A: πΉ(π₯)= (3/2)x^2-(2/3)x^(3/2)+1
Q4. Find an antiderivativeπ of π(π‘)=1 / (t)^(1/2).
A: π(π‘)= 2t^(1/2)+3
Q5. Evaluate exactly, using the Fundamental Theorem of Calculus:
A: ∫^π_0 2π^π₯ ππ₯= 2e^r-2
Q6. Evaluate exactly, using the Fundamental Theorem of Calculus:
A: ∫^π_0 (π₯^6/7+2π₯) ππ₯= r^7/49+r^2
'[Umich] COE Core > MATH 115 (Calc 1)' μΉ΄ν κ³ λ¦¬μ λ€λ₯Έ κΈ
Calculus 1 Summary Notes (0) | 2022.12.13 |
---|---|
[Notes & HW Answers] 6.1 Antiderivatives Graphically and Numerically (0) | 2022.12.08 |
[Notes & HW Answers] 5.4 Theorems about Definite Integral (0) | 2022.12.06 |
[Notes & HW Answers] 5.3 The Fundamental Theorem of Calculus (0) | 2022.12.06 |
[Notes & HW Answers] 5.2 The Definite Integral (0) | 2022.12.06 |
λκΈ