λ³Έλ¬Έ λ°”λ‘œκ°€κΈ°
[Umich] COE Core/MATH 115 (Calc 1)

[Notes & HW Answers] 6.2 Constructing Antiderivatives Analytically

by Class of 26' Yuri Hong 2022. 12. 8.

[Notes & HW Answers] 6.2 Constructing Antiderivatives Analytically.pdf
0.93MB

[Prepwork 6.2]

Q1. If πΉ(π‘₯) is an antiderivative of π‘“(π‘₯), what is the most general antiderivative?

A: The most general antiderivative = F(x) + C

Q2. Using the properties of antiderivatives in theorem 6.1 to find

(3cos(π‘₯)+2sin(π‘₯))𝑑π‘₯
A:(3cos(π‘₯)+2sin(π‘₯))𝑑π‘₯= 3sin(x) - 2cos(x) + C
Q3. Use the Fundamental Theorem to calculate the following integral exactly:

A: ∫^(πœ‹/3)_0 (2/cos^2πœƒ) π‘‘πœƒ= 2tan(πœ‹/3) - 2tan(0)

[HW 6.2]

Q1. Find an antiderivative πΊ of π‘”(𝑧)=1/𝑧^6

A: 𝐺(𝑧)= (-1/5)z^(-5)+1

Q2. Find an antiderivative π‘ƒ of 𝑝(𝑠)=3sin(3𝑠). 

A: 𝑝(𝑠)= -cos(3s)+3 

Q3. Find an antiderivative πΉ(π‘₯) of π‘“(π‘₯)=3π‘₯−(x)^(1/2).

A: 𝐹(π‘₯)= (3/2)x^2-(2/3)x^(3/2)+1

Q4. Find an antiderivative𝑃 of 𝑝(𝑑)=1 / (t)^(1/2).

A: 𝑃(𝑑)= 2t^(1/2)+3

Q5. Evaluate exactly, using the Fundamental Theorem of Calculus:

A:  ∫^π‘Ÿ_0 2𝑒^π‘₯ π‘‘π‘₯= 2e^r-2

Q6. Evaluate exactly, using the Fundamental Theorem of Calculus:
A: ∫^π‘Ÿ_0 (π‘₯^6/7+2π‘₯) 𝑑π‘₯= r^7/49+r^2

 

λŒ“κΈ€